Effect of the Ligand in the Modeling the 3d Structure of the M3 Muscarinic Receptor
نویسندگان
چکیده
There are still many question open to completely understand the structure-activity relationships of G-protein coupled receptors. Issues like the actual mapping of the binding site of different subtypes, as well as the mechanism of activation are poorly understood [1]. Accordingly, further studies on the structure-activity relationships are necessary. In this regard, only a few 3D structures are available from X-ray diffraction studies. Computational studies can complement this information through the construction of reliable 3D models. The goal of the present work is to evaluate the effect of using different ligands to obtain reliable models of the three-dimensional structure of a G-protein coupled receptor using a specific template. Specifically, we have constructed in the present work a three dimensional model of the M3 muscarinic receptor by homology modelling, using the Xray structure of M2 muscarinic acetylcholine receptor as template and the sequence analyses of muscarinic acetylcholine receptor family. Furthermore, we have studied the effect of the ligand used in the modelling process. For this purpose three models of the receptor were built, including one without ligand and two models with the selective antagonists tiotropium and N-Methylscopolamine, respectively docked into the orthosteric binding site. The constructed models were refined using molecular dynamic calculations to analyze the effect of ligand refinement process and to derive significant conformational information. Based on the analysis of the refined models done through the calculations of RMSD, RMSF, visualization of the structures and comparison between the refined models and the crystal structure of M3 muscarinic receptor, the addition of a ligand in construction of homology model (and the subsequent refinement process) stabilize the structure. Furthermore, the similarities in the structure conformations of both refined models of M3 muscarinic-ligand complexes and the crystal structure of the M3 muscarinic receptors, suggest that the methodology used in this study can be used in prediction of 3D structure prediction GPCR in the absence of crystal structures. Chapter 1: Introduction
منابع مشابه
MUSCARINIC RECEPTOR SUBTYPES IN SMOOTH MUSCLE FROM THE BODY OF HUMAN STOMACH
Up to date, there are four pharmacologically characterized subtypes of muscarinic receptors (M1, M2, M3 and M4). In our study we have investigated muscarinic receptor subtypes in smooth muscle layers of human stomach. Isolated preparations of longitudinal and circular muscle layers from human stomach were used. Acetylcholine, bethanechol, carbachol, pilocarpine and AHR -602 produced concen...
متن کاملDoes Achillea millefolium extracts possess prokinetic effects on the bovine abomasum thourgh M3 muscarinic receptors?
Displacement of the abomasum is a common disease of the gastrointestinal tract in dairy cattle. Abomasal displacement has been associated with abomasal hypomotility. Therefore, it is necessary to identify effective therapeutic agents that stimulate abomasal motility in cattle. Yarrow (Achillea millefolium) is traditionally used as a folk remedy for treatment of human gastrointestinal c...
متن کاملModeling and interactions analysis of the novel antagonist agent flibanserin with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor as a HSDD treatment in premenopausal women
Flibanserin is a novel antagonist small molecule to treat the hypoactive sexual desire disorder (HSDD) in the premenopausal women. The present article is related to the structural and electronic properties study and docking analysis of the title compound with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor. To access these aims, the molecular structure of the said compound was optimized usin...
متن کاملMolecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site
The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template...
متن کاملDistinct Agonist Regulation of Muscarinic Acetylcholine M2-M3 Heteromers and Their Corresponding Homomers*
Each subtype of the muscarinic receptor family of G protein-coupled receptors is activated by similar concentrations of the neurotransmitter acetylcholine or closely related synthetic analogs such as carbachol. However, pharmacological selectivity can be generated by the introduction of a pair of mutations to produce Receptor Activated Solely by Synthetic Ligand (RASSL) forms of muscarinic rece...
متن کامل